Dimensions | 1.1 m x 1.1 m x 0.75 m |
Mass | 100 kg |
Platform radius | 25 cm |
Arm length | 37.5 cm |
Maximum payload | 100 kg |
Workspace¹ | ± 7.4 cm (x), ± 11.0 cm (y), ± 5.4 cm (z) ± 17 deg (roll), +15 deg & -27 deg (pitch), ± 27 deg (yaw) |
Maximum joint speed² | 0.67 m/s |
Maximum acceleration² | 1 g |
Operational bandwidth² | 0 – 10 Hz |
Lead screw pitch | 1 cm/rev |
Actuator maximum force | 403 N |
Actuator travel | ± 15 cm |
Encoder resolution (in quadrature) | 10,000 cont/rev |
Products
Call for price
Overview
The Hexapod is comprised of six linear ball-screw actuators driven by six DC motors. The ball-screw is based on a high-quality, low backlash linear guide with a total travel of 30 cm and is driven by a high torque direct drive motor. A revolute joint fastens the arms to each motor. For maximum safety, a motor brake control employs the Hexapod’s brakes when the joints reach their limit. Motor position feedback for all six motors is provided by optical encoders that measure the angular position of the motor shaft. An optional six axes ATI force/torque sensor can be installed on the end-effector to capture measurements of forces and torques along all degrees of freedom.
High precision ball screw mechanism
High-performance built-in amplifier
High-resolution optical encoders to measure the joint angles
Easy interface through universal USB connection
Optional six DOF force/torque sensor
Easy integration of third party structures, sensors and actuators
Safety brake logic circuit and built-in mechanical brakes
Additional information
Manufacturer | |
---|---|
Discipline |