Call for price


The Active Suspension consists of three masses that along stainless steel shafts using linear bearings and is supported by a set of springs. The upper mass (blue) represents the vehicle body supported above the suspension, the middle mass (red) corresponds to one of the vehicle’s tires, and the bottom (silver) mass simulates the road. The upper mass is connected to a high-quality DC motor through a capstan to emulate an active suspension system that can dynamically compensate for the motions introduced by the road. The lower plate is driven by a powerful DC motor connected to a lead screw and cable transmission system.

Three high-resolution encoders used to measure positions of bottom and top masses as well as suspension deflection
226 W MICROMO brushless DC motor connected to capstan for active suspension control
70 W Magmotor brushed DC motor connected to belt-drive mechanism for road actuation
Adjustable weight and spring stiffness
Accelerometer measurements as sensory input
Responsive belt-drive mechanism to simulate the road surface
Accelerometer mounted on top plate to measure vehicle body acceleration
Limit switch and protection circuit

Dimensions (W x L x H) 30.5 cm x 30.5 cm x 61 cm
Total mass 15 kg
Range of motion ± 22 mm (road), ±19 mm (tire), ± 25.4 mm (car)
Position resolution 0.002 mm/count (road), 0.005 mm/count (tire), 0.009 mm (car)
Stiffness adjustable from 0.4 to 2 N/mm
Excitation frequency up to 15 Hz
Resonant frequency configurable between 2 to 6 Hz
Accelerometer sensitivity 9.81 m/Vs²

For Simulink

  • QUARC® add-on for MATLAB®/Simulink®
  • Quanser AMPAQ-L2 linear current amplifier
  • One of the following DAQ devices:
    • Quanser Q8-USB
    • Quanser QPIDe


  • Quanser Rapid Control Prototyping (Q-RCP) Toolkit® add-on for NI LabVIEW™
  • Quanser AMPAQ-L2 linear current amplifier
  • One of the following DAQ devices:
    • NI CompactRIO with two Quanser Q1-cRIO modules
    • Quanser Q8-USB
    • Quanser QPIDe

Additional information